Finite element approximation of a nonlinear cross-diffusion population model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element approximation of a nonlinear cross-diffusion population model

where j = i and gi(u1, u2) := (μi − γii ui − γij uj) ui. In the above, the given data is as follows: v is an environmental potential, c i ∈ R≥0, ai ∈ R>0 are diffusion coefficients, bi ∈ R are transport coefficients, μi ∈ R≥0 are the intrinsic growth rates, and γii ∈ R≥0 are intra-specific, whereas γij , i = j, ∈ R≥0 are interspecific competition coefficients. In addition to showing well-posedn...

متن کامل

Finite element approximation of a population spatial adaptation model.

In [18], Sighesada, Kawasaki and Teramoto presented a system of partial differential equations for modeling spatial segregation of interacting species. Apart from competitive Lotka-Volterra (reaction) and population pressure (cross-diffusion) terms, a convective term modeling the populations attraction to more favorable environmental regions was included. In this article, we study numerically a...

متن کامل

Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion

Article history: Received 24 August 2012 Received in revised form 31 August 2013 Accepted 5 September 2013 Available online 13 September 2013

متن کامل

Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem

Given p e (0, 1), we consider the following problem find u # 0, such that AM = [uf+ =u p in a u = 0 on dO , where Q, er IR is a C 1 domain We prove a near optimal L error bound for the Standard continuous piecewise line ar Galerkin finite element approximation withan acute triangulation In addition we analyse a more practical approximation us ing numerical intégration on the nonlinear term, pro...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2004

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-004-0540-y